05-Oct-2018 - University of Liverpool

A highly active organic photocatalyst

Scientists from the University of Liverpool, University College London and East China University of Science and Technology have synthesized a new organic material that can convert water into hydrogen fuel using sunlight.

Photocatalytic solar hydrogen production--or water splitting--offers an abundant clean energy source, but only if the energy in sunlight can be harvested effectively. Inorganic materials are better known as water splitting catalysts, but organic catalysts can also be built from cheap abundant elements, such as carbon, nitrogen, and sulphur.

The Liverpool-led team has used a combination of experiment and computation to discover a highly active organic photocatalyst. This also revealed some basic design principles, which may guide us to even better catalysts in the future.

Mr Xiaoyan Wang, the Liverpool Chemistry PhD student who led the experimental work, said: "To achieve high hydrogen evolution rates, you need good water affinity, broad light adsorption, high surface area, and high crystallinity. By introducing all of these features in one material, we got a very active photocatalyst."

Facts, background information, dossiers

  • crystallinity
  • organocatalysts
  • covalent organic frameworks
  • benzo-bis(benzothio…
  • sulfones

More about University of Liverpool

  • News

    Heat-Insulating Titanate

    Searching for lead materials with specific properties, researchers have developed a workflow that incorporates artificial intelligence to guide discovery of a new ceramic structure with particularly low thermal conductivity. As they explain in the journal Angewandte Chemie, the material has ... more

    New protein nanobioreactor designed to improve sustainable bioenergy production

    Researchers at the University of Liverpool have unlocked new possibilities for the future development of sustainable, clean bioenergy. The study, published in Nature Communications, shows how bacterial protein 'cages' can be reprogrammed as nanoscale bioreactors for hydrogen production. The ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: