29-Mar-2017 - Aalto University

Artificial materials atom-by-atom

Researchers at Aalto University have manufactured artificial materials with engineered electronic properties. By moving individual atoms under their microscope, the scientists were able to create atomic lattices with a predetermined electrical response. The possibility to precisely arrange the atoms on a sample bring 'designer quantum materials' one step closer to reality. By arranging atoms in a lattice, it becomes possible to engineer the electronic properties of the material through the atomic structure.

Working at a temperature of four degrees Kelvin, the researchers used a scanning tunnelling microscope (STM) to arrange vacancies in a single layer of chlorine atoms supported on a copper crystal.

"The correspondence between atomic structure and electronic properties is of course what happens in real materials as well, but here we have complete control over the structure. In principle, we could target any electronic property and implement it experimentally", says Dr. Robert Drost who carried out the experiments at Aalto University.

Using their atomic assembly method, the research team demonstrated complete control by creating two real-life structures inspired by fundamental model systems with exotic electronic properties.

The approach is not limited to the chlorine system chosen by the research team either. The same method can be applied in many well-understood systems in surface and nanoscience and could even be adapted to mesoscopic systems, such as quantum dots, which are controlled through lithographic processes.

"There are many fascinating theoretical proposals that don't exist in real materials. This is our chance to test these ideas experimentally", explains Academy Research Fellow Teemu Ojanen at Aalto University.

Facts, background information, dossiers

More about Aalto University

  • News

    A greener route to blue

    Organic, i.e. carbon-containing dyes have important roles in nature. For example, they are responsible for transporting oxygen and other gases in the body (as part of haemoglobin) and converting solar energy into chemical energy in photosynthesis (chlorophyll). One class of artificial organ ... more

    Extraordinarily strong nonlinear optical graphene-like material could renovate nonlinear photonics

    Nonlinear optics is a key enabling technology of our modern society, such as in imaging and high-speed data communication. But the traditional devices suffer from relatively small nonlinear optical coefficients of conventional optical materials. An interdisciplinary team of scientists from ... more

    Simple Biomechanical Test could aid Implant Success

    The quality of the tissue-implant interface is key to the success of implant integration. High-output benchtop screening can help developers in assessing the complex interplay between biomaterials and the body to better prepare for clinical trials.High-output screening aims to maximize the ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: