q&more
My watch list
my.chemie.de  
Login  

News

The protein “CHIP” unfurls anti-aging activity

Researchers uncover the link between protein aggregation and aging

CECAD

In a human cell, CHIP (red) is recruited to clusters of a dementia-inducing protein (yellow). There is not enough CHIP for insulin receptor degradation in this situation. The cell undergoes premature aging.

24-Apr-2017: Not only does our way of life determine how long we live but so too does our genetic material. Of particular importance here is a genetic program that is controlled by the insulin receptor. A team of researchers from the Universities of Cologne and Bonn has now discovered how protein aggregation affects this genetic program and thus triggers aging.

Early in evolution, sugar intake and the regulation of life span were linked with each other. The hormone insulin is crucial here. It reduces blood sugar levels by binding to its receptor on the cell surface. However, many processes for stress management and survival are shut down at the same time. When there is a good supply of food, they appear unnecessary to the organism, although this reduces life expectancy over the long term. The insulin receptor thus acts like a brake on life expectancy. Genetically altered laboratory animals in which the insulin receptor no longer functions actually live much longer than normal. But how is the insulin receptor normally kept in check in our cells and tissue? A recent study by scientists at the Universities of Cologne and Bonn answers this fundamental question.

The team of researchers shows that the protein CHIP plays a crucial role here. It acts like a disposal helper, in that it supplies the insulin receptor to the cellular breakdown and recycling systems by affixing a “green dot” in the form of the molecule ubiquitin onto the receptor. The life expectancy brake is thus released and CHIP unfurls anti-aging activity. “CHIP fulfils this function in nematodes, as well as in fruit flies and in humans. This makes the protein so interesting for us,” explains Prof. Thorsten Hoppe, one of the two lead authors of the study from the Cluster of Excellence CECAD at the University of Cologne. 

When CHIP is missing, it leads to premature aging 

The findings were initially very surprising, as CHIP had so far been associated with completely different breakdown processes. Specifically, CHIP also disposes of faulty and damaged proteins, which increasingly occur at an older age and the accumulation of which leads to dementia and muscle weakness. The researchers actually recreated such degenerative illnesses in the nematode and in human cells and observed that there was no longer enough CHIP available to break down the insulin receptor. Premature aging is the result.

Can the dream of a fountain of youth be made a reality and life extended in that researchers encourage cells to form more CHIP? “Unfortunately, it’s not that easy,” says lead author Prof. Jörg Höhfeld from the Institute for Cell Biology at the University of Bonn. When there is too much CHIP, undamaged proteins are also recycled and the organism is weakened. However, the researchers are already looking for mechanisms that control CHIP when breaking down the insulin receptor and that could one day also be used for new treatments.

Original publication:
Riga Tawo et al.; "The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover"; Cell; Volume 169, Issue 3, p470–482.e13, 20 April 2017

Facts, background information, dossiers

  • insulin
  • life expectancy
  • ubiquitin
  • cell biology

More about Uni Köln

  • News

    A 40-year-old catalyst unveils its secrets

    “Titanium silicalite-1” (TS-1) is not a new catalyst: It has been almost 40 years since its development and the discovery of its ability to convert propylene into propylene oxide, an important basic chemical in the chemical industry. Now, by combining various methods, a team of scientists f ... more

    Repair instead of renew: damaged powerhouses of cells have their own ‘workshop mode’

    If the energy supply of a cell is disturbed by damage, it can protect itself from functional losses and repair itself in a kind of workshop mode. That is the result of a new study conducted by molecular biologist Professor Dr. Aleksandra Trifunovic and Dr. Karolina Szcepanowska as a leading ... more

    The smell of food controls cellular recycling and affects life expectancy

    The smell of food affects physiology and aging. That is the result of research conducted on the model organism of the roundworm by a research team led by Professor Thorsten Hoppe at the Cluster of Excellence for Aging Research (CECAD). Surprisingly, this relationship is due to a single pair ... more

  • q&more articles

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Peter T. Rühr

    Peter T. Rühr, born in 1988, studied biology with a focus on the head morphology of primary wingless insects at the Zoological Research Museum Alexander Koenig and at the University of Bonn, where he received his master's degree in 2017. Since 2018 he has been working at the University of C ... more

More about Universität Bonn

  • News

    New method allows precise gene control by light

    A novel optical switch makes it possible to precisely control the lifespan of genetic "copies". These are used by the cell as building instructions for the production of proteins. The method was developed by researchers from the universities of Bonn and Bayreuth. It may significantly advanc ... more

    A "corset" for the enzyme structure

    The structure of enzymes determines how they control vital processes such as digestion or immune response. This is because the protein compounds are not rigid, but can change their shape through movable "hinges". The shape of enzymes can depend on whether their structure is measured in the ... more

    How cells recognize uninvited guests

    Until now, the immune sensor TLR8 has remained in the shadows of science. A research team led by the University of Bonn has now discovered how this sensor plays an important role in defending human cells against intruders. The enzymes RNaseT2 and RNase2 cut ribonucleic acids (RNAs) of bacte ... more

  • q&more articles

    How gold plasma can make hidden structures visible

    In recent years, microcomputed tomography (μCT) has become a standard method in many medical, scientific and industrial fields. This non-invasive technique enables three-dimensional imaging of a wide variety of structures. However, a new combination of methods now makes it possible to visua ... more

  • Authors

    Dr. Markus Lambertz

    Markus Lambertz, born in 1984, studied biology with a focus on zoology, paleontology and geology in Bonn, where he graduated with a diploma degree in 2010. After a research stay over several months in Ribeirão Preto (Brazil) he worked on his doctoral thesis in Bonn, receiving his doctorate ... more

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath studied biochemistry and obtained diploma and Ph.D. degrees from the Free University Berlin (West). He is Professor and Chair of Life Science Informatics at the Bonn-Aachen International Center for Information Technology (B-IT) and the LIMES Institute of the University of Bo ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:

 

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE