30-May-2017 - Technische Universität Wien - Institut für Verbrennungskraftmaschinen u. Kraftfahrzeugbau

Tracking microbial faecal pollution in water

Identifying faecal bacteria by their DNA

In a project supported by the Austrian Science Fund FWF, the microbiologist Andreas Farnleitner is looking at new methods for analysing faecal pollution in water. Using DNA analytics, the scientist aims to develop comprehensive and simple methods to determine the extent and origin of faecal pollution.

In 2015, the United Nations formulated 17 objectives for sustainable development. One of these objectives is to provide all people with access to clean water. At present, the water available to at least 1.5 billion people is polluted with faeces. This may produce serious illnesses such as cholera – some 500,000 people fall ill because of consuming polluted water each year. The goal is to solve this problem by 2030, but it is often difficult to put the right measures in place, because the source of the pollution cannot be detected using currently available tests. In a project funded by the Austrian Science Fund FWF, a group led by Andreas Farnleitner from the Technische Universität Wien (TU Wien) and the Karl Landsteiner University of Health Sciences in Krems intends to change that by research into developing more accurate and faster analytical methods for water.

A method more than 100 years old

“For the past 120 years, faeces have been detected in water on the basis of the intestinal bacterium Escherichia coli. It lives in the intestines of animals and humans, and it is relatively simple to detect it in water”, says Farnleitner in the interview with scilog. “You filter the water and put the filter on a petri dish. If Escherichia coli is present, it will start to grow and form easily visible colonies the next day. This is the traditional method used, conditioning all standards worldwide.” According to Farnleitner, however, this essential standard method no longer suffices. “For one thing, the test does not tell us the source of the contamination. Is it animal or human? Domestic or wild animal? Today you also want to be able to draw conclusions about the health risk.” In and of itself, the Escherichia coli bacterium is harmless and not all faeces contain dangerous microbial agents. “We need methods to assess what types of faecal pathogens might be present in the water”, explains Farnleitner.

Identifying faecal bacteria by their DNA

In several projects funded by the FWF, Farnleitner conducts research into new detection methods for faecal microbial contamination in water resources. He concentrates his efforts on populations of intestinal bacteria that could not be detected in the past, so-called “abundant host-associated bacteria”. “Actually, Escherichia coli bacteria only play a supporting role in the intestines. Other bacteria are found in much higher amounts, higher by several orders of magnitude even, but, unlike Escherichia coli, they cannot be cultivated by means of standard processes.” It is possible, however, to detect those bacteria directly by means of their DNA. “In principle, it is a bit like using DNA analysis in criminal investigations. We analyse the DNA of faecal bacteria that are relevant for our purposes.”

Finding out just which bacteria are relevant for such an analysis is at the centre of one ongoing FWF project. In order to find the answer, Farnleitner analyses the faeces of a wide variety of domestic and wild animals, including birds, reptiles, amphibians and fish, as well as soil specimens, in order to draw up a database of the microorganisms found there. “We have built the faecal database which by now includes excretions from more than 450 different animals, in order to get a first impression of the diversity and the differences of bacterial populations between the various faecal contamination sources.” In the sampling, which was conducted worldwide, the researchers were assisted by veterinarians in a team led by Chris Walzer and Gabrielle Stalder from the University of Veterinary Medicine, Vienna.

23 million DNA sequences

Distinguishing groups of animals on the basis of their faecal bacteria presented the research group with new challenges: “It is a more complex undertaking than we thought. First of all we established that the faeces of ruminants are very different from the rest. This was to be expected because their digestive system works differently. It is nice to see that this fact is reflected in their intestinal microbiome.” Among other issues, the project concerns the question of “co-evolution”. Some intestinal bacteria developed together with their host and are characteristic of that organism. They are like a fingerprint for the respective group of animals. This is exactly what Farnleitner’s team is looking for. So far they have analysed 23 million DNA sequences – a number that represents a challenge for current bioinformatics methods. The molecular biologist Georg Reischer is in charge of sequence analysis, supported by the group of Prof Ruth Ley at the Max Planck Institute in Tübingen, Germany.

“In the future we will be able to use the outcome for field tests and rapid detection methods that work outside in the open air, using simple tools. All over the world, people are working on developing such intelligent detection tools”, says Farnleitner. “A race was started 10 years ago in the USA, where new regulations were introduced. If you have problems with water quality in the US, you also have to specify their source. This development is going to revolutionise the analysis of water quality”, concludes Farnleitner. Now, after almost 150 years, the door is open for progress.

  • Mayer RE, Egle L, Bofill-Mas S, Reischer GH, Schade, M., Fernandez-Cassi, Mach RL, Lindner G, Fuchs, W., Kirschner, A, Gaisbauer M, Püringer H, Blaschke A.P., Girones R, Zessner M, Sommer R & Farnleitner AH; "Occurrence of human-associated Bacteroidetes genetic source tracking marker in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution"; Water Research; 90: 265-276, 2016
  • Schijven, J, Derx, J., De Roda Husman, A.M., Blaschke, A.P. & Farnleitner AH; " QMRAcatch - Microbial quality simulation of water resources including infection risk assessment"; J. Environmental Quality; 44(5): 1491-1502, 2015
  • Reischer, G.H. et al.; "Performance characteristics of qPCR assays targeting human- and ruminant-associated Bacteroidetes for microbial source tracking across sixteen countries on six continents"; Environmental Science & Technology; 47 (15):8548-8556, 2013
  • Reischer, GH, Kollanur, D, Vierheilig J, Wehrspaun, C, Mach, R, Stadler, H, Sommer, R & Farnleitner, AH; "A hypothesis-driven approach for the identification of fecal pollution sources in water resources"; Environmental Science & Technology; 45(9):4038-45, 2011

Technische Universität Wien - Institut für Verbrennungskraftmaschinen u. Kraftfahrzeugbau

Request information now

Recommend news PDF version / Print Add news to watchlist

Share on

Facts, background information, dossiers

  • water
  • water quality
  • detection methods

More about TU Wien - IFA

  • News

    Neural Hardware for Image Recognition in Nanoseconds

    Automatic image recognition is widely used today: There are computer programs that can reliably diagnose skin cancer, navigate self-driving cars, or control robots. Up to now, all this has been based on the evaluation of image data as delivered by normal cameras - and that is time-consuming ... more

    Better Imaging Using Sound

    Individual molecules cannot be photographed – if you wish to visualise objects that are smaller than the wavelength of light, you'll need a few special tricks up your sleeve. You can use electron microscopes for example, or determine the position of specific fluorescent molecules by taking ... more

    Fluorescence dyes from the pressure cooker

    The laboratory of Dr. Miriam M. Unterlass at the Institute of Materials Chemistry at TU Wien has just reported the synthesis of more than 20 different perylene bisimide dyes. This is not impressive per se. The way they prepare these compounds is though: Conventionally, perylene bisimides ar ... more

More about Fonds zur Förderung der wissenschaftlichen Forschung

  • News

    Identifying virus killers in ancient medicinal plants

    Many organisms have to defend themselves against predators, diseases or pests. Their metabolic products constitute a chemical arsenal that has been used for medical purposes since time immemorial. Using state-of-the-art methods, a team led by Judith Rollinger is screening traditional knowle ... more

    Instilling order and knowledge into the flood of data

    In the context of a project funded by the Austrian Science Fund FWF, a research group from the St. Pölten University of Applied Sciences has developed a versatile framework for data visualisation that permits easy integration of expert knowledge. Processing large amounts of data is one of t ... more

    How to make a protein trap

    Once they can synthesise molecules of active natural substances, scientists will be able to harness nature’s medicine cabinet for the drugs of the future. By testing newly developed synthesising processes and catalysts, a project funded by the Austrian Science Fund FWF managed to produce th ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: