26-Oct-2017 - Aalto University

Extraordinarily strong nonlinear optical graphene-like material could renovate nonlinear photonics

The discovery could enable high resolution imagining at low-power

Nonlinear optics is a key enabling technology of our modern society, such as in imaging and high-speed data communication. But the traditional devices suffer from relatively small nonlinear optical coefficients of conventional optical materials. An interdisciplinary team of scientists from Aalto University, University of Eastern Finland, University of Arizona, Cambridge University, University of Ottawa, Italian Institute of Technology, and National University of Singapore, discovered that monolayer molybdenum disulfide, a unique two-dimensional (2D) layered material similar to graphene, has an extremely large nonlinear optical response, which can efficiently convert low-energy photons into coherent high-energy photons.

“This unusual property can be used for highly miniaturized on-chip photonic devices, such as high-resolution imaging and efficient optical data switching applications,” tells Prof. Zhipei Sun from Aalto University, Finland.

The researchers also observed that the nonlinear multiphoton processes of this material are very sensitive to the number of layers and crystal orientation. The researchers demonstrated that these nonlinear optical processes could also be exploited for rapid and reliable characterization of similar atomically thin materials. This is of great interest in the research and industry.

”Our demonstrated multiphoton approach is a few orders of magnitude faster than the conventional optical microscopy methods. This clearly shows its potential for industrial high-volume and large-size material and device characterization for next generation electronics and photonics,” says Prof. Harri Lipsanen from Aalto University.

Interestingly, the international team also found that the high-order nonlinear optical processes are stronger than the low-order ones. This is contrary to intuition, and is quite surprising, since the intensity of non-linear processes usually decreases with the order in the textbook. Prof. Nasser Peyghambarian, the Finland Distinguished Professor from College of Optical Sciences at the University of Arizona, USA, highlights:

“Such a unique nonlinear optical response is not only interesting for fundamental physics, but also very noteworthy for practical applications, such as, microscopy, therapy, and data switching”.

Facts, background information, dossiers

  • Aalto University
  • photons
  • imaging

More about Aalto University

  • News

    A greener route to blue

    Organic, i.e. carbon-containing dyes have important roles in nature. For example, they are responsible for transporting oxygen and other gases in the body (as part of haemoglobin) and converting solar energy into chemical energy in photosynthesis (chlorophyll). One class of artificial organ ... more

    Simple Biomechanical Test could aid Implant Success

    The quality of the tissue-implant interface is key to the success of implant integration. High-output benchtop screening can help developers in assessing the complex interplay between biomaterials and the body to better prepare for clinical trials.High-output screening aims to maximize the ... more

    Artificial materials atom-by-atom

    Researchers at Aalto University have manufactured artificial materials with engineered electronic properties. By moving individual atoms under their microscope, the scientists were able to create atomic lattices with a predetermined electrical response. The possibility to precisely arrange ... more

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: