08-Dec-2017 - Universität Regensburg

Protein-folding simulations sped up

Proteins, the ubiquitous workhorses of biochemistry, are huge molecules whose function depends on how they fold into intricate structures. To understand how these molecules work, researchers use computer modeling to calculate how proteins fold.

Now, a new algorithm can accelerate those vital simulations, enabling them to model phenomena that were previously out of reach. The results can eventually help scientists better understand and treat diseases like Alzheimer's, said Emanuel Peter, a chemist at the University of Regensburg.

Conventional simulations, using molecular dynamics and Monte Carlo methods, have been successful overall at modeling biological molecules like proteins. To determine how proteins fold, the simulation searches for configurations that correspond to lower and lower energy states. Eventually, it finds the lowest energy state, which gives a stable fold. But as the simulation searches, it may encounter a configuration with a slightly higher energy, which forms a barrier that impedes the algorithm.

As a result of these slowdowns, conventional methods can only simulate molecular behaviors occurring over short time scales of a few hundred microseconds. Many phenomena, such as certain protein folds or a drug binding to a potential target, happen over the course of a few seconds, minutes or even days. Simulating such long timescales would take too much computation time with just conventional approaches.

To speed up the simulations, researchers can inject energy into the system, which pushes the model over any energy barriers. But one of the biggest challenges to these methods is in defining the coordinates that describe the system -- which, for example, can be the length between atoms in the molecule, and the angles between bonds. Traditionally, researchers define the coordinates before they start the simulation. Every time step along each coordinate depends on the previous step. But this dependency can bias the simulation.

Peter's new algorithm avoids this bias. He found a generalized coordinate system in which each time step doesn't rely on the previous step. "Only few parameters are needed, and no human intuition is required, which can potentially bias the simulation result," he said.

To test the new algorithm, Peter used it to model water, a peptide called dialanine, the folding of another peptide called TrpCage, and the clumping of amyloid-beta 25-35, which are protein fragments associated with Alzheimer's disease. In each case, his technique reports to have sped up the simulations. And the simulations of amyloid-beta could help explain why Alzheimer's has been difficult to treat.

In Alzheimer's disease, amyloid-beta protein fragments aggregate together, forming hard plaque that builds up between neurons and disrupts them. Amyloid-beta is also a toxin, leading to neuronal cell death and degeneration of neuronal function. The new simulations suggest that amyloid-beta can assume a range of structures. This structural flexibility could be why some drugs that try to inhibit aggregation haven't been successful, Peter said. When those drugs bind to amyloid-beta, the amyloid-beta just changes shape, allowing it to continue clumping together. The drug becomes incorporated into the aggregate and the plaque.

This type of structural flexibility, called conformation entropy, is also a key feature in other peptides that form toxic plaques in diseases such as Huntington's disease, Type 2 diabetes, and Parkinson's disease. The new algorithm could therefore be useful for understanding these other diseases as well.

Facts, background information, dossiers

  • amyloid beta
  • protein folding
  • proteins
  • Alzheimer's disease
  • biophysics
  • peptides
  • Parkinson's disease
  • neurons
  • neurobiology
  • aggregation
  • plaques
  • bioinformatics

More about Uni Regensburg

  • News

    Structure of central inflammation switch elucidated

    Researchers at the Universities of Bonn and Regensburg have elucidated the structure of a central cellular inflammatory switch. Their work shows which site of the giant protein called NLRP3 inhibitors can bind to. This opens the way to develop new pharmaceuticals that could target inflammat ... more

    Cellular stress causes cancer cell chemoresistance

    Resistance of cancer cells against therapeutic agents is a major cause of treatment failure, especially in recurrent diseases. An international team around the biochemists Robert Ahrends from the University of Vienna and Jan Medenbach from the University of Regensburg identified a novel mec ... more

    Initial repulsion does not rule out subsequent attraction

    The Philosopher Arthur Schopenhauer formulated a metaphor called the porcupine dilemma, which explains a certain optimal distance between people. People feel alone at too large a spacing and uneasy at too close a proximity. Schopenhauer explained the ideal spacing using the following parabl ... more

  • q&more articles

    Micelles as a reaction environment

    Photoredox catalysis has developed into a powerful tool for the synthesis of organic compounds with diverse structures. However, the high stability of carbon-chloride bonds has long hampered the use of cheap and readily available chloroalkanes as substrates. more

    Interesting Health Promoters

    There is barely a class of compounds among the secondary metabolites of plants that is so prominently represented in our lives as that of the flavonoids. They are found in ­numerous food substances in various oxidation states, and principally as glycosides (Fig. 1). By consuming fruit, vege ... more

  • Authors

    Prof. Dr. Burkhard König

    Burkhard König, born in 1963, received his Ph.D. in 1991 from the University of Hamburg. He continued his scientific education as a post-doctoral fellow with Prof. M. A. Bennett, Research School of Chemistry, Australian National University, Canberra, and Prof. B. M. Trost, Stanford Universi ... more

    Dr. Maciej Giedyk

    Maciej Giedyk, born in 1988, graduated with a Master's of Engineering degree in chemistry from the Warsaw University of Technology, Poland, in 2012. He completed his PhD studies at the Institute of Organic Chemistry Polish Academy of Sciences under the supervision of Professor Dorota Gryko ... more

    Prof. Dr. Jörg Heilmann

    born 1966, studied pharmacy at the Heinrich-Heine-University Düsseldorf and received his licence to practise in 1991. From 1991 – 1992, he worked as a pharmacist in the Löwen-Apotheke in Mülheim an der Ruhr. After receiving his doctorate in 1997 from the Chair in Pharmaceutical Biology at t ... more

More about American Institute of Physics

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by: