To use all functions of this page, please activate cookies in your browser.
my.chemie.de
With an accout for my.chemie.de you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
132 Current news of Max-Planck-Gesellschaft
rss![]() |
You can refine your search further. Select from the filter options on the left to narrow down your results. |
This new miniature microscope is a game changer for exploring the link between neural activity and complex animal behavior
01-Dec-2022
How can we see what neurons deep in the cortex are doing during behavior? Researchers at the Max Planck Institute for the Neurobiology of Behavior - caesar (MPINB) have developed a miniature microscope small enough to be carried on the head of a freely moving mouse and capable of measuring ...
Metrics for organ development have now been defined for the first time
24-Nov-2022
Researchers from Dresden and Vienna reveal link between connectivity of three-dimensional structures in tissues and the emergence of their architecture to help scientists engineer self-organising tissues that mimic human organs. Organs in the human body have complex networks of fluid-filled tubes ...
Scientific journeys back in time can provide invaluable insights for the future
17-Oct-2022
The central biocatalyst in Photosynthesis, Rubisco, is the most abundant enzyme on earth. But how did Rubisco evolve, and how did it adapt to environmental changes during Earth’s history? By reconstructing billion-year-old enzymes, a team of Max Planck Researchers has deciphered one of the key ...
10-Oct-2022
Synthetic – i. e. artificially produced - cells can imitate certain functions of biological cells. These synthetic cells could open up new medical possibilities in the future. In laboratories, such cells can already help in chemical processes on a miniature scale as "mini-reactors". Scientists at ...
Findings demonstrate how gene evolution occurs as an “adaptive walk” through time
16-Sep-2022
A new study from the Max Planck Institute for Evolutionary Biology in Plön and the University of Sussex in the UK shows that the age of a gene determines how fast they adapt. These findings demonstrate how gene evolution occurs as an “adaptive walk” through time. New species arise and evolve ...
Significantly improving the "sense of smell" of molecular laser spectroscopy: Increases chances to reliably detect diseases
25-Aug-2022
Sensitive animal noses can sniff out trace particles, such as volatile organic compounds, in the ambient air. Humans, on the other hand, are developing innovative technologies for this purpose, such as optical spectroscopy. This uses laser light to detect the molecular composition of gases. It ...
New method facilitates identification of cell-type specific genes in single-cell data
06-Jul-2022
The thousands of cells in a biological sample are all different and can be analyzed individually, cell by cell. Based on their gene activity, they can be sorted into clusters. But which genes are particularly characteristic of a given cluster, i.e. what are its “marker genes”? A new statistical ...
Organoids that mimic human brain cortex in development and disease
27-Jun-2022
“Outer Radial Glia” (oRG) cells are nervous system stem cells that are instrumental for the development of the human cortex and have been challenging to produce in the lab. Now, a team of Max Planck researchers from Berlin succeeded in generating brain organoids that are enriched with these stem ...
Leap in knowledge of peptide nanofibrils
03-Jun-2022
Viruses help researchers to introduce genes into cells so that they can produce active pharmaceutical ingredients, for example. Special peptides stimulate the process. Until now, however, the efficiency increase was poorly understood. A team of researchers from the MPI for Polymer Research, the ...
Researchers develop a new method to simultaneously measure flow and oxygen - Accurate and fast as never before
25-May-2022
An international research team headed by the Max Planck Institute for Marine Microbiology in Bremen, Aarhus University and the Science for Life Lab in Uppsala has developed tiny particles that measure the oxygen concentration in their surroundings. In this way, they can track fluid flow and ...
q&more – the networking platform for quality excellence in lab and process
The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.
> more about q&more
q&more is supported by: