To use all functions of this page, please activate cookies in your browser.
my.chemie.de
With an accout for my.chemie.de you can always see everything at a glance – and you can configure your own website and individual newsletter.
- My watch list
- My saved searches
- My saved topics
- My newsletter
29 Current news of TU Wien
rss![]() |
You can refine your search further. Select from the filter options on the left to narrow down your results. |
Information is obtained that none of the methods alone could reveal
30-Sep-2022
One has to look very closely to exactly understand what processes take place on the surfaces of catalysts. Solid catalysts are often finely structured materials made of tiny crystals. There are various microscopies to monitor chemical processes on such surfaces – they use, for example, ...
A fingertip-sized chip replaces bulky laboratory equipment: The possible applications are extremely diverse
01-Sep-2022
An infrared sensor has been developed at TU Wien (Vienna) that analyses the content of liquids within the fraction of a second. In analytical chemistry, it is often necessary to accurately monitor the concentration change of certain substances in liquids on a time scale of seconds. Especially in ...
Using light, atoms can be made to attract each other
04-Aug-2022
A very special bonding state between atoms has been created in the laboratory for the first time: With a laser beam, atoms can be polarised so that they are positively charged on one side and negatively charged on the other. This makes them attract each other creating a very special bonding ...
Breakthrough in neutron physics
21-Jul-2022
Particles can move as waves along different paths at the same time – this is one of the most important findings of quantum physics. A particularly impressive example is the neutron interferometer: neutrons are fired at a crystal, the neutron wave is split into two portions, which are then ...
TU Wien has developed a chemical process that uses special catalysts to turn climate-damaging carbon dioxide into valuable methanol
29-Jun-2022
For reasons of climate protection, carbon dioxide must not be released into the atmosphere. Wherever the formation of carbon dioxide cannot be prevented, it should be captured and converted into other substances. The best possible solution is creating substances that have value and can be sold. A ...
Living cells meet high-resolution 3D printing process
14-Apr-2022
Until now, there have been two completely different approaches to producing artificial tissue. At TU Wien, a third approach has now been developed that combines the advantages of both. It is an age old dream of medicine: if arbitrary kinds of tissue could be produced artificially from stem cells, ...
How a chemical reaction takes place that, at first glance, should not be possible at the temperatures observed
05-Apr-2022
What happens when a cat climbs onto a sunflower? The sunflower is unstable, will quickly bend, and the cat will fall to the ground. However, if the cat only needs a quick boost to catch a bird from there, then the sunflower can act as a "metastable intermediate step". This is essentially the ...
Creating a sponge-like hole structure on the nanometre scale that allows small molecules to pass through, record-breaking chemical reactivity was achieved
16-Feb-2022
Catalysts are often solid materials whose surface comes into contact with gases or liquids, thereby enabling certain chemical reactions. However, this means that any atoms of the catalyst that are not on the surface serve no real purpose. Therefore, it is important to produce extremely porous ...
Circular economy for CO2
18-Nov-2021
To establish a carbon-neutral circular economy in the future, technologies are needed that use carbon dioxide as a raw material. In the form of formate, CO2 can be metabolised by certain bacteria. Acetogens are a group of bacteria that can metabolise formate. For example, they form acetic acid – ...
Scientists succeed in linking microscopic and macroscopic approaches - and thus solve an old puzzle
28-Oct-2021
Chemical reactions can be studied at different levels: At the level of individual atoms and molecules, new compounds can be designed. At the level of tiny particles on the nano and micrometre scale, one can understand how catalyst materials influence chemical reactions. And in order to use ...
q&more – the networking platform for quality excellence in lab and process
The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.
> more about q&more
q&more is supported by: