My watch list

[Report] Suppressing relaxation in superconducting qubits by quasiparticle pumping

Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability. Authors: Simon Gustavsson, Fei Yan, Gianluigi Catelani, Jonas Bylander, Archana Kamal, Jeffrey Birenbaum, David Hover, Danna Rosenberg, Gabriel Samach, Adam P. Sears, Steven J. Weber, Jonilyn L. Yoder, John Clarke, Andrew J. Kerman, Fumiki Yoshihara, Yasunobu Nakamura, Terry P. Orlando, William D. Oliver

Authors:   Simon Gustavsson; Fei Yan; Gianluigi Catelani; Jonas Bylander; Archana Kamal; Jeffrey Birenbaum; David Hover; Danna Rosenberg; Gabriel Samach; Adam P. Sears; Steven J. Weber; Jonilyn L. Yoder; John Clarke; Andrew J. Kerman; Fumiki Yoshihara; Yasunobu Nakamura; Terry P. Orlando; William D. Oliver
Journal:   Science
Volume:   354
edition:   6319
Year:   2016
Pages:   1573
DOI:   10.1126/science.aah5844
Publication date:   23-Dec-2016
Facts, background information, dossiers
  • reductions
  • evolution
  • coherence
  • superconducting qubits
  • quasiparticles
  • quantum systems
  • FEI
  • environment
  • electrons
  • density
Weitere Publikationen aus %journal%

q&more – the networking platform for quality excellence in lab and process

The q&more concept is to increase the visibility of recent research and innovative solutions, and support the exchange of knowledge. In the broad spectrum of subjects covered, the focus is on achieving maximum quality in highly innovative sectors. As a modern knowledge platform, q&more offers market participants one-of-a-kind networking opportunities. Cutting-edge research is presented by authors of international repute. Attractively presented in a high-quality context, and published in German and English, the original articles introduce new concepts and highlight unconventional solution strategies.

> more about q&more

q&more is supported by:


Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE